Sains
Malaysiana 54(7)(2025): 1687-1699
http://doi.org/10.17576/jsm-2025-5407-04
Dark
Septate Endophytic Fungi and Thiocyanate Induced Gold Accumulation of Brassica
juncea and Amaranthus spinosus Grown on Gold Mine Tailings
(Kulat Endofit
Berseptum Gelap dan Tiosianat Mengaruh Pengumpulan Emas oleh Amaranthus
spinosus dan Brassica juncea yang Ditanam di Sisa Lombong Emas)
RENALDY RACHMAN SEPTIAN1,
SULISTIJORINI2, SURONO3 & HAMIM2,*
1Graduate
Program of Plant Biology, Department of Biology, Faculty of Mathematics and
Natural Sciences, IPB University. Jl. Agathis, Dramaga Campus, Bogor, West
Java, Indonesia 16680
2Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University. Jl.
Agathis, Dramaga Campus, Bogor, West Java, Indonesia 16680
3Research
Centre for Applied Microbiology, Research Organization for Life Sciences and
Environment, National Research and Innovation Agency, Cibinong, West Java,
Indonesia
Diserahkan: 17
Mac 2024/Diterima: 19 Mei 2025
Abstract
Plants
can absorb metals, including gold, making them potential as phytomining agents.
This study investigated the ability of Brassica juncea and Amaranthus
spinosus inoculated with Dark Septate Endophyte (DSE) fungi and
treated with ammonium thiocyanate to accumulate gold (Au) from gold mine
tailings. The plants were inoculated with DSE fungi (S14 and S51), referred to
as D1 and D2, respectively, and a control group without inoculation (D0). They
were grown in four media: Soil (T0), Tailing (T1), Tailing + ammonium
thiocyanate 0.62 g/kg (T2), and Tailing + ammonium thiocyanate 1.24 g/kg (T3).
Results indicated successful DSE colonisation across treatments, improving root
and shoot dry weight, plant height, chlorophyll and carotene contents, and gold
uptake. Thiocyanate enhanced gold absorption but caused plant death at high
concentrations. A. spinosus transported more gold
to shoots, while B. juncea accumulated more gold in
roots. The highest phytomining potential was observed in B.
juncea inoculated with DSE S14 (D1) in T2 media. These findings
highlight the potential of combining plant species, DSE fungi, and chelating
agents to optimise phytomining in gold-contaminated sites. DSE fungi not only
enhanced gold uptake but also mitigated stress caused by tailings, offering an
eco-friendly strategy for metal recovery. Future research should explore
scalability and long-term impacts to strengthen phytomining as a sustainable
alternative in gold mining reclamation efforts.
Keywords: Amaranth;
ammonium thiocyanate; DSE fungus; gold phytomining; phytoremediation
Abstrak
Tumbuhan
mempunyai keupayaan menyerap logam, termasuk emas, menjadikannya agen fitopelombongan
yang berpotensi. Penyelidikan ini mengkaji kemampuan Brassica juncea dan Amaranthus spinosus yang diinokulasi dengan kulat Endofit Berseptum
Gelap (DSE) dan dirawat dengan ammonium tiosianat untuk mengumpulkan emas (Au) daripada
sisa lombong emas. Tumbuhan diinokulasi dengan kulat DSE (S14 dan S51) yang
dirujuk sebagai D1 dan D2 serta kumpulan kawalan tanpa inokulasi (D0). Tumbuhan
ditanam di atas empat media: Tanah (T0), Sisa lombong (T1), Sisa lombong +
amonium tiosianat 0.62 g/kg (T2) dan Sisa lombong + amonium tiosianat 1.24 g/kg
(T3). Hasil menunjukkan kejayaan kolonisasi DSE dalam semua
rawatan, meningkatkan berat kering akar dan pucuk, tinggi tumbuhan, kandungan klorofil
dan karotena serta serapan emas. Tiosianat meningkatkan
serapan emas tetapi menyebabkan kematian tumbuhan pada kepekatan tinggi. A.
spinosus mengangkut lebih banyak emas ke bahagian pucuk, manakala B.
juncea mengumpul lebih banyak emas di akar. Potensi fitopelombongan
tertinggi diperoleh oleh B. juncea yang diinokulasi dengan DSE S14 (D1)
dalam media T2. Penemuan ini menunjukkan potensi gabungan spesies tumbuhan,
kulat DSE dan agen pengkelat untuk mengoptimumkan fitopelombongan di kawasan
tercemar emas. Kulat DSE bukan sahaja meningkatkan serapan emas tetapi juga
mengurangkan tekanan akibat sisa lombong, serta menawarkan strategi mesra alam
untuk pemulihan logam. Penyelidikan lanjut harus meneliti kebolehskalaan dan
kesan jangka panjang untuk mengukuhkan fitopelombongan sebagai alternatif
mampan dalam usaha pemulihan kawasan perlombongan emas.
Kata kunci: Amaranth; amonium tiosianat; fitopelombongan emas; fitoremediasi; kulat DSE
RUJUKAN
Alengebawy,
A., Abdelkhalek, S.T., Qureshi, S.R. & Wang, M.Q. 2021. Heavy metals and
pesticides toxicity in agricultural soil and plants: Ecological risks and human
health implications. Toxics 9(3): 1-34.
Andriya,
N., Hamim, H., Sulistijorini & Triadiati. 2019. The phytoremediation
potential of non-edible oil-producing plants for gold mine tailings. Biodiversitas 20(10): 2949-2957.
Azizitorghabeh,
A., Mahandra, H., Ramsay, J. & Ghahreman, A. 2021. Gold leaching from an oxide
ore using thiocyanate as a lixiviant: Process optimization and kinetics. ACS
Omega 6(27): 17183-17193.
Berthelot,
C., Zegeye, A., Gaber, D.A., Chalot, M., Franken, P., Kovács, G.M., Leyval, C.
& Blaudez, D. 2020. Unravelling the role of melanin in Cd and Zn tolerance
and accumulation of three dark septate endophytic species. Microorganisms 8(4): 537.
Bi, B., Xiao, Y., Xu, X., Chen, Q., Li, H., Zhao, Z.
& Li, T. 2024. Diversity
and functional roles of root-associated endophytic fungi in two dominant
pioneer trees reclaimed from a metal mine slag heap in Southwest China. Microorganisms 12(10): 2067.
Cao, G.H., He, S., Chen, D., Li, T. & Zhao, Z.W. 2019. EpABC genes
in the adaptive responses of Exophiala pisciphila to metal stress:
Functional importance and relation to metal tolerance. Appl. Environ. Microbiol. 85(23): e01844-19.
de
la Rosa, G., Torres, J., Parsons, J.G., Peralta-Videa, J.R., Castillo-Michel,
H., Lopez, M.L., Cruz-Jiménez, G. & Gardea-Torresdey, J.G. 2009. X-ray
absorption spectroscopy unveils the formation of gold nanoparticles in corn. Acta
Universitaria 19(2): 76-81.
Diene,
O., Sakagami, N. & Narisawa, K. 2014. The role of dark septate endophytic
fungal isolates in the accumulation of cesium by Chinese cabbage and tomato
plants under contaminated environments. PLoS ONE 9(10): 109233.
Dinh,
T., Dobo, Z. & Kovacs, H. 2022. Phytomining of noble metals - A review. Chemosphere 286(3): 131805.
Domka,
A.M., Rozpaądek, P. & Turnau, K. 2019. Are fungal endophytes merely
mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants
to metal toxicity. Microbiology 10(3): 371-401.
dos
Santos, S.G., da Silva, P.R.A., Garcia, A.C., Zilli, J.É. & Berbara, R.L.L.
2017. Dark septate endophyte decreases stress on rice plants. Brazilian
Journal of Microbiology 48(2): 333-341.
Ebbs,
S.D., Kolev, S.D., Piccinin, R.C.R., Woodrow, I.E. & Baker, A.J.M. 2010.
Solubilization of heavy metals from gold ore by adjuvants used during gold
phytomining. Minerals Engineering 23(10): 819-822.
Emamverdian,
A., Ding, Y., Mokhberdoran, F. & Xie, Y. 2015. Heavy metal stress and some
mechanisms of plant defense response. Scientific World Journal 2015: 756120.
Feng,
Y.X., Yang, L., Lin, Y.J., Song, Y. & Yu, X.Z. 2023. Merging the occurrence
possibility into gene co-expression network deciphers the importance of
exogenous 2-oxoglutarate in improving the growth of rice seedlings under
thiocyanate stress. Frontier in Plant Science 14: 1086098.
Ferrari,
E., Barbero, F., Busquets-Fité, M., Franz-Wachtel, M., Köhler, H.R., Puntes, V.
& Kemmerling, B. 2021. Growth-promoting gold nanoparticles decrease stress
responses in arabidopsis seedlings. Nanomaterials 11(12): 3161.
Giannakoula,
A., Therios, I. & Chatzissavvidis, C. 2021. Effect of lead and copper on
photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The
role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 10(1): 155.
Hamim,
H., Mutyandini, A., Sulistyaningsih, Y.C., Putra, H.F., Saprudin, D. &
Setyaningsih, L. 2019. Effect of mercury on growth, anatomy and physiology of
four non-edible oil-producing species. Asian Journal of Plant Sciences 18(4): 164-174.
Hamim,
H., Hilmi, M., Sulistyaningsih, Y.C. & Taufikurahman. 2018. Growth,
histochemical and physiological responses of non-edible oil producing plant (Reutealis
trisperma) to gold mine tailings. Biodiversitas 19(4): 1294-1302.
He, C., Zeng, Q., Chen, Y., Chen, C., Wang, W., Hou,
J. & Li, X. 2021. Colonisation
by dark septate endophytes improves the growth and rhizosphere soil microbiome
of licorice plants under different water treatments. Applied Soil Ecology 166: 103993.
Hou,
L., Yu, J., Zhao, L. & He, X. 2020. Dark septate endophytes improve the
growth and the tolerance of Medicago sativa and Ammopiptanthus
mongolicus under cadmium stress. Microbiology 10: 3061-3132.
Jain,
A., Sinilal, B., Dhandapani, G., Meagher, R.B. & Sahi, S.V. 2013. Effects
of deficiency and excess of zinc on morphophysiological traits and
spatiotemporal regulation of zinc-responsive genes reveal incidence of cross
talk between micro- and macronutrients. Environmental Science and Technology 47(10): 5327-5335.
Jumpponen, A. & Trappe, J.M. 1998. Dark septate
endophytes: A review of facultative biotrophic root-colonizing fungi. New
Phytologist 140(2): 295-310.
Kopittke,
P.M., Blamey, F.P.C., Asher, C.J. & Menzies, N.W. 2010. Trace metal
phytotoxicity in solution culture: A review. Journal of Experimental Botany 61: 945-954.
Kos,
B., Grčman, D. & Leštan, D. 2003. Phytoextraction of lead, zinc and
cadmium from soil by selected plants. Plant Soil Environment 12: 548-553.
Krisnayanti,
B.D., Anderson, C.W.N., Sukartono, S., Afandi, Y., Suheri, H. & Ekawanti,
A. 2016. Phytomining for artisanal gold mine tailings management. Minerals 6(3): 84.
Lacercat-Didier,
L., Berthelot, C., Foulon, J., Errard, A., Martino, E., Chalot, M. &
Blaudez, D. 2016. New mutualistic fungal endophytes isolated from poplar roots
display high metal tolerance. Mycorrhiza 26: 657-671.
Lichtenthaler,
H.K. 1987. Chlorophylls and carotenoid: Pigments of photosynthetic
biomembranes. Methods in Enzymology 148:
350-382.
Li, Q., Wang, Y., Li, Y., Li, L., Tang, M., Hu, W., Chen,
L. & Ai, S. 2023. Speciation
of heavy metals in soils and their immobilization at micro-scale interfaces
among diverse soil components. Science of the Total Environment 825: 153862.
Li,
T., Liu, M.J., Zhang, X.T., Zhang, H.B., Sha, T. & Zhao, Z.W. 2011. Improved
tolerance of maize (Zea mays L.) to heavy metals by colonisation of a
dark septate endophyte (DSE) Exophiala pisciphila. Science of the
Total Environment 409(6): 1069-1074.
Mahar,
A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R. &
Zhang, Z. 2016. Challenges and opportunities in the phytoremediation of heavy
metals contaminated soils: A review. Ecotoxicology and Environmental Safety 126:
111-121.
Małecka,
A., Konkolewska, A., Hanć, A., Barałkiewicz, D., Ciszewska, L.,
Ratajczak, E., Staszak, A.M., Kmita, H. & Jarmuszkiewicz, W. 2019. Insight
into the phytoremediation capability of Brassica juncea (v. Malopolska):
Metal accumulation and antioxidant enzyme activity. Molecular Sciences 20(18): 4355.
Malicka,
M., Magurno, F. & Piotrowska-Seget, Z. 2022. Plant association with dark
septate endophytes: When the going gets tough (and stressful), the tough fungi
get going. Chemosphere 302: 134830.
Marfuah,
D.S., Hamim, H., Sulistyaningsih, Y.C., Surono, S., Setyaningsih, L. &
Saprudin, D. 2024. Dark septate endophyte inoculation improved Pb
phytoremediation of Jatropha curcas and Reutealis trisperma on
gold mine tailings. Bioremediation Journal 28(3): 325-342.
Mattina,
M.J.I., Lannucci-Berger, W., Musante, C. & White, J.C. 2003. Concurrent
plant uptake of heavy metals and persistent organic pollutants from soil. Environmental
Pollution 124(3): 375-378.
Melati,
I., Rahayu, G., Surono & Henny, C. 2021. Decolourization of congo red
synthetic dyes by dark septate endophytes. IOP Conference Series: Earth
& Environmental Science 948: 012073.
Napaldet,
J.T. & Buot, I.E. 2020. Absorption of lead and mercury in dominant aquatic
macrophytes of Balili river and its implication to phytoremediation of water
bodies. Tropical Life Sciences Research 31(2): 19-32.
Narasimha,
M., Prasad, V., Maria, H. & Freitas, O. 2003. Metal hyperaccumulation in
plants-Biodiversity prospecting for phytoremediation technology. Electronic
Journal of Biotechnology 6(3): 285-321.
Narisawa, K., Tokumasu, S. & Hashiba, T. 1998. Suppression of
clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium
chaetospira. Plant Pathology 47(2): 206-210.
Oladipo,
O.G., Awotoye, O.O., Olayinka, A., Bezuidenhout, C.C. & Maboeta, M.S. 2018.
Heavy metal tolerance traits of filamentous fungi isolated from gold and
gemstone mining sites. Brazilian Journal of Microbiology 49(1): 29-37.
Pasricha,
S., Mathur, V., Garg, A., Lenka, S., Verma, K. & Agarwal, S. 2021.
Molecular mechanisms underlying heavy metal uptake, translocation and tolerance
in hyperaccumulators - An analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges (4): 100197.
Phillips,
J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and
staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid
assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.
Pisco,
R.R., Yarce, J.P.G., Restrepo, J.J.G. & Palacio, D.G. 2017. Gold
phytoextraction and mining-degraded soil reclamation. Acta Agronomica 66(4): 574-579.
Potisek,
M., Likar, M., Vogel-Mikuš, K., Arčon, I., Grdadolnik, J. & Regvar, M.
2021. 1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in
isolates of melanised dark septate endophytes. Ecotoxicology and
Environmental Safety 222: 112493.
Purba,
F.N., Nawangsing, A.A., Surono, Efi, T.T., Syabana, M.A. & Lestari, M.A.
2024. Inhibition of dark septate endophyte fungus metabolites against oil palm
basal stem rot disease caused by Ganoderma boninense from oil palm (Elaeis
guinensis Jacq.). IOP
Conference Series: Earth & Environmental Science 948: 012074.
Qin,
Y., Pan, X., Kubicek, C., Druzhinina, I., Chenthamara, K., Labbé, J. & Yuan,
Z. 2017. Diverse plant-associated pleosporalean fungi from saline areas:
Ecological tolerance and nitrogen-status dependent effects on plant growth. Frontiers
in Microbiology 8: 158.
Rahman,
M.M., Azirun, S.M. & Boyce, A.N. 2013. Enhanced accumulation of copper and
lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica
juncea) and sunflower (Helianthus annuus). PLoS ONE 8(5): e6294.
Saha,
D., Choyal, P., Mishra, U.M., Dey, P., Bose, P., Gupta, N.K., Mehta, B.K.,
Kumar, P., Pandey, S., Chauhan, J. & Singhal, R.K. 2022. Drought stress responses and inducing tolerance by seed priming approach
in plants. Plant Stress 4: 100066.
Santos,
M., Cesanelli, I., Diánez, F., Sánchez-Montesinos, B. & Moreno-Gavíra, A.
2021. Advances in the role of dark septate endophytes in the plant resistance
to abiotic and biotic stresses. Fungi 7(11): 939-954.
Setyaningsih,
L., Wulandari, A.S. & Hamim, H. 2018. Growth of typha grass (Typha
angustifolia) on gold-mine tailings with application of arbuscular
mycorrhiza fungi. Biodiversitas 19(2): 454-459.
Siddiqi, K.S. &
Husen, A. 2016. Engineered gold
nanoparticles and plant adaptation potential. Nanoscale Research Letters 11: 400. https://doi.org/10.1186/s11671-016-1607-2
Singh,
J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P. & Kumar, P. 2018. “Green”
synthesis of metals and their oxide nanoparticles: Applications for
environmental remediation. Nanobiotechnology 16(1): 84-108.
Sucipto,
I., Munif, A. & Tondok, E.T. 2015. Eksplorasi Bakteri dan Cendawan
Endofit sebagai Agens Pengendali Penyakit Blas (Pyricularia oryzae) pada Padi Sawah. Bogor: Institut
Pertanian Bogor.
Usman,
K., Al-Ghouti, M.A. & Abu-Dieyeh, M.H. 2019. The assessment of cadmium,
chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena
qataranse. Scientific Reports 9(1): 5658-5669.
Vergara,
C., Araujo, K.E.C., Urquiaga, S., Schultz, N., Balieiro, F.C., Medeiros, P.S.,
Santos, L.A., Xavier, G.R. & Zilli, J.E. 2017. Dark septate endophytic
fungi help tomato to acquire nutrients from ground plant material. Microbiology 8(12): 2437-2449.
Wei,
S., Zhou, Q. & Mathews, S. 2008. A newly found cadmium accumulator-Taraxacum mongolicum. Journal of Hazardous Materials 159: 544-547.
Wilson-Corral, V., Anderson, C.W.N. &
Rodriguez-Lopez, M. 2012. Gold
phytomining. A review of the relevance of this technology to mineral extraction
in the 21st century. Environmental Management 111: 249-257.
Xiao,
R., Wang, S., Li, R., Wang, J.J. & Zhang, Z. 2017. Soil heavy metal
contamination and health risks associated with artisanal gold mining in
Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety 141: 17-24.
Yang,
L., Feng, Y.X., Lin, Y.J. & Yu, X.Z. 2021. Comparative effects of sodium
hydrosulfide and proline on functional repair in rice chloroplast through the
D1 protein and thioredoxin system under simulated thiocyanate pollution. Chemosphere 284: 131389.
Yu,
X.Z. & Zhang, F.Z. 2013. Effects of exogenous thiocyanate on mineral
nutrients, antioxidative responses and free amino acids in rice seedlings. Ecotoxicology 22: 752-760.
Yuliani, D., Soekarno, B.P.W.,
Munif, A. & Surono, S. 2020. Antagonism potency of dark septate endophytes
against Pyricularia oryzae for improving health of rice plants. Jurnal
Agro 7(2): 134-147.
Zhan, F., He,
Y., Zu, Y., Li, T. & Zhao, Z. 2011. Characterization of melanin isolated from a dark septate endophyte
(DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology 27(10): 2483-2489.
Zhuang,
P., Yang, Q.W., Wang, H.B. & Shu, W.S. 2007. Phytoextraction of heavy
metals by eight plant species in the field. Water, Air, and Soil Pollution 184(1-4): 235-242.
*Pengarang
untuk surat-menyurat; email: hamim@apps.ipb.ac.id