Sains Malaysiana 54(7)(2025): 1687-1699

http://doi.org/10.17576/jsm-2025-5407-04

 

Dark Septate Endophytic Fungi and Thiocyanate Induced Gold Accumulation of Brassica juncea and Amaranthus spinosus Grown on Gold Mine Tailings

(Kulat Endofit Berseptum Gelap dan Tiosianat Mengaruh Pengumpulan Emas oleh Amaranthus spinosus dan Brassica juncea yang Ditanam di Sisa Lombong Emas)

 

RENALDY RACHMAN SEPTIAN1, SULISTIJORINI2, SURONO3 & HAMIM2,*

 

1Graduate Program of Plant Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University. Jl. Agathis, Dramaga Campus, Bogor, West Java, Indonesia 16680  

2Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University. Jl. Agathis, Dramaga Campus, Bogor, West Java, Indonesia 16680

 3Research Centre for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Cibinong, West Java, Indonesia

 

Diserahkan: 17 Mac 2024/Diterima: 19 Mei 2025

 

Abstract

Plants can absorb metals, including gold, making them potential as phytomining agents. This study investigated the ability of Brassica juncea and Amaranthus spinosus inoculated with Dark Septate Endophyte (DSE) fungi and treated with ammonium thiocyanate to accumulate gold (Au) from gold mine tailings. The plants were inoculated with DSE fungi (S14 and S51), referred to as D1 and D2, respectively, and a control group without inoculation (D0). They were grown in four media: Soil (T0), Tailing (T1), Tailing + ammonium thiocyanate 0.62 g/kg (T2), and Tailing + ammonium thiocyanate 1.24 g/kg (T3). Results indicated successful DSE colonisation across treatments, improving root and shoot dry weight, plant height, chlorophyll and carotene contents, and gold uptake. Thiocyanate enhanced gold absorption but caused plant death at high concentrations. A. spinosus transported more gold to shoots, while B. juncea accumulated more gold in roots. The highest phytomining potential was observed in B. juncea inoculated with DSE S14 (D1) in T2 media. These findings highlight the potential of combining plant species, DSE fungi, and chelating agents to optimise phytomining in gold-contaminated sites. DSE fungi not only enhanced gold uptake but also mitigated stress caused by tailings, offering an eco-friendly strategy for metal recovery. Future research should explore scalability and long-term impacts to strengthen phytomining as a sustainable alternative in gold mining reclamation efforts.

Keywords: Amaranth; ammonium thiocyanate; DSE fungus; gold phytomining; phytoremediation

 

Abstrak

Tumbuhan mempunyai keupayaan menyerap logam, termasuk emas, menjadikannya agen fitopelombongan yang berpotensi. Penyelidikan ini mengkaji kemampuan Brassica juncea dan Amaranthus spinosus yang diinokulasi dengan kulat Endofit Berseptum Gelap (DSE) dan dirawat dengan ammonium tiosianat untuk mengumpulkan emas (Au) daripada sisa lombong emas. Tumbuhan diinokulasi dengan kulat DSE (S14 dan S51) yang dirujuk sebagai D1 dan D2 serta kumpulan kawalan tanpa inokulasi (D0). Tumbuhan ditanam di atas empat media: Tanah (T0), Sisa lombong (T1), Sisa lombong + amonium tiosianat 0.62 g/kg (T2) dan Sisa lombong + amonium tiosianat 1.24 g/kg (T3). Hasil menunjukkan kejayaan kolonisasi DSE dalam semua rawatan, meningkatkan berat kering akar dan pucuk, tinggi tumbuhan, kandungan klorofil dan karotena serta serapan emas. Tiosianat meningkatkan serapan emas tetapi menyebabkan kematian tumbuhan pada kepekatan tinggi. A. spinosus mengangkut lebih banyak emas ke bahagian pucuk, manakala B. juncea mengumpul lebih banyak emas di akar. Potensi fitopelombongan tertinggi diperoleh oleh B. juncea yang diinokulasi dengan DSE S14 (D1) dalam media T2. Penemuan ini menunjukkan potensi gabungan spesies tumbuhan, kulat DSE dan agen pengkelat untuk mengoptimumkan fitopelombongan di kawasan tercemar emas. Kulat DSE bukan sahaja meningkatkan serapan emas tetapi juga mengurangkan tekanan akibat sisa lombong, serta menawarkan strategi mesra alam untuk pemulihan logam. Penyelidikan lanjut harus meneliti kebolehskalaan dan kesan jangka panjang untuk mengukuhkan fitopelombongan sebagai alternatif mampan dalam usaha pemulihan kawasan perlombongan emas.

Kata kunci: Amaranth; amonium tiosianat; fitopelombongan emas; fitoremediasi; kulat DSE

 

RUJUKAN

Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. & Wang, M.Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3): 1-34.

Andriya, N., Hamim, H., Sulistijorini & Triadiati. 2019. The phytoremediation potential of non-edible oil-producing plants for gold mine tailings. Biodiversitas 20(10): 2949-2957.

Azizitorghabeh, A., Mahandra, H., Ramsay, J. & Ghahreman, A. 2021. Gold leaching from an oxide ore using thiocyanate as a lixiviant: Process optimization and kinetics. ACS Omega 6(27): 17183-17193.

Berthelot, C., Zegeye, A., Gaber, D.A., Chalot, M., Franken, P., Kovács, G.M., Leyval, C. & Blaudez, D. 2020. Unravelling the role of melanin in Cd and Zn tolerance and accumulation of three dark septate endophytic species. Microorganisms 8(4): 537.

Bi, B., Xiao, Y., Xu, X., Chen, Q., Li, H., Zhao, Z. & Li, T. 2024. Diversity and functional roles of root-associated endophytic fungi in two dominant pioneer trees reclaimed from a metal mine slag heap in Southwest China. Microorganisms 12(10): 2067.

Cao, G.H., He, S., Chen, D., Li, T. & Zhao, Z.W. 2019. EpABC genes in the adaptive responses of Exophiala pisciphila to metal stress: Functional importance and relation to metal tolerance. Appl. Environ. Microbiol. 85(23): e01844-19. 

de la Rosa, G., Torres, J., Parsons, J.G., Peralta-Videa, J.R., Castillo-Michel, H., Lopez, M.L., Cruz-Jiménez, G. & Gardea-Torresdey, J.G. 2009. X-ray absorption spectroscopy unveils the formation of gold nanoparticles in corn. Acta Universitaria 19(2): 76-81.

Diene, O., Sakagami, N. & Narisawa, K. 2014. The role of dark septate endophytic fungal isolates in the accumulation of cesium by Chinese cabbage and tomato plants under contaminated environments. PLoS ONE 9(10): 109233.

Dinh, T., Dobo, Z. & Kovacs, H. 2022. Phytomining of noble metals - A review. Chemosphere 286(3): 131805.

Domka, A.M., Rozpaądek, P. & Turnau, K. 2019. Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Microbiology 10(3): 371-401.

dos Santos, S.G., da Silva, P.R.A., Garcia, A.C., Zilli, J.É. & Berbara, R.L.L. 2017. Dark septate endophyte decreases stress on rice plants. Brazilian Journal of Microbiology 48(2): 333-341.

Ebbs, S.D., Kolev, S.D., Piccinin, R.C.R., Woodrow, I.E. & Baker, A.J.M. 2010. Solubilization of heavy metals from gold ore by adjuvants used during gold phytomining. Minerals Engineering 23(10): 819-822.

Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal 2015: 756120.

Feng, Y.X., Yang, L., Lin, Y.J., Song, Y. & Yu, X.Z. 2023. Merging the occurrence possibility into gene co-expression network deciphers the importance of exogenous 2-oxoglutarate in improving the growth of rice seedlings under thiocyanate stress. Frontier in Plant Science 14: 1086098.

Ferrari, E., Barbero, F., Busquets-Fité, M., Franz-Wachtel, M., Köhler, H.R., Puntes, V. & Kemmerling, B. 2021. Growth-promoting gold nanoparticles decrease stress responses in arabidopsis seedlings. Nanomaterials 11(12): 3161.

Giannakoula, A., Therios, I. & Chatzissavvidis, C. 2021. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 10(1): 155.

Hamim, H., Mutyandini, A., Sulistyaningsih, Y.C., Putra, H.F., Saprudin, D. & Setyaningsih, L. 2019. Effect of mercury on growth, anatomy and physiology of four non-edible oil-producing species. Asian Journal of Plant Sciences 18(4): 164-174.

Hamim, H., Hilmi, M., Sulistyaningsih, Y.C. & Taufikurahman. 2018. Growth, histochemical and physiological responses of non-edible oil producing plant (Reutealis trisperma) to gold mine tailings. Biodiversitas 19(4): 1294-1302.

He, C., Zeng, Q., Chen, Y., Chen, C., Wang, W., Hou, J. & Li, X. 2021. Colonisation by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under different water treatments. Applied Soil Ecology 166: 103993.

Hou, L., Yu, J., Zhao, L. & He, X. 2020. Dark septate endophytes improve the growth and the tolerance of Medicago sativa and Ammopiptanthus mongolicus under cadmium stress. Microbiology 10: 3061-3132.

Jain, A., Sinilal, B., Dhandapani, G., Meagher, R.B. & Sahi, S.V. 2013. Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Environmental Science and Technology 47(10): 5327-5335.

Jumpponen, A. & Trappe, J.M. 1998. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytologist 140(2): 295-310.

Kopittke, P.M., Blamey, F.P.C., Asher, C.J. & Menzies, N.W. 2010. Trace metal phytotoxicity in solution culture: A review. Journal of Experimental Botany 61: 945-954.

Kos, B., Grčman, D. & Leštan, D. 2003. Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environment 12: 548-553.

Krisnayanti, B.D., Anderson, C.W.N., Sukartono, S., Afandi, Y., Suheri, H. & Ekawanti, A. 2016. Phytomining for artisanal gold mine tailings management. Minerals 6(3): 84.

Lacercat-Didier, L., Berthelot, C., Foulon, J., Errard, A., Martino, E., Chalot, M. & Blaudez, D. 2016. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza 26: 657-671.

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoid: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.

Li, Q., Wang, Y., Li, Y., Li, L., Tang, M., Hu, W., Chen, L. & Ai, S. 2023. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Science of the Total Environment 825: 153862.

Li, T., Liu, M.J., Zhang, X.T., Zhang, H.B., Sha, T. & Zhao, Z.W. 2011. Improved tolerance of maize (Zea mays L.) to heavy metals by colonisation of a dark septate endophyte (DSE) Exophiala pisciphila. Science of the Total Environment 409(6): 1069-1074.

Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R. & Zhang, Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety 126: 111-121.

Małecka, A., Konkolewska, A., Hanć, A., Barałkiewicz, D., Ciszewska, L., Ratajczak, E., Staszak, A.M., Kmita, H. & Jarmuszkiewicz, W. 2019. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): Metal accumulation and antioxidant enzyme activity. Molecular Sciences 20(18): 4355.

Malicka, M., Magurno, F. & Piotrowska-Seget, Z. 2022. Plant association with dark septate endophytes: When the going gets tough (and stressful), the tough fungi get going. Chemosphere 302: 134830.

Marfuah, D.S., Hamim, H., Sulistyaningsih, Y.C., Surono, S., Setyaningsih, L. & Saprudin, D. 2024. Dark septate endophyte inoculation improved Pb phytoremediation of Jatropha curcas and Reutealis trisperma on gold mine tailings. Bioremediation Journal 28(3): 325-342.

Mattina, M.J.I., Lannucci-Berger, W., Musante, C. & White, J.C. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution 124(3): 375-378.

Melati, I., Rahayu, G., Surono & Henny, C. 2021. Decolourization of congo red synthetic dyes by dark septate endophytes. IOP Conference Series: Earth & Environmental Science 948: 012073.

Napaldet, J.T. & Buot, I.E. 2020. Absorption of lead and mercury in dominant aquatic macrophytes of Balili river and its implication to phytoremediation of water bodies. Tropical Life Sciences Research 31(2): 19-32.

Narasimha, M., Prasad, V., Maria, H. & Freitas, O. 2003. Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6(3): 285-321.

Narisawa, K., Tokumasu, S. & Hashiba, T. 1998. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathology 47(2): 206-210.

Oladipo, O.G., Awotoye, O.O., Olayinka, A., Bezuidenhout, C.C. & Maboeta, M.S. 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology 49(1): 29-37.

Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K. & Agarwal, S. 2021. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators - An analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges (4): 100197.

Phillips, J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.

Pisco, R.R., Yarce, J.P.G., Restrepo, J.J.G. & Palacio, D.G. 2017. Gold phytoextraction and mining-degraded soil reclamation. Acta Agronomica 66(4): 574-579.

Potisek, M., Likar, M., Vogel-Mikuš, K., Arčon, I., Grdadolnik, J. & Regvar, M. 2021. 1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. Ecotoxicology and Environmental Safety 222: 112493.

Purba, F.N., Nawangsing, A.A., Surono, Efi, T.T., Syabana, M.A. & Lestari, M.A. 2024. Inhibition of dark septate endophyte fungus metabolites against oil palm basal stem rot disease caused by Ganoderma boninense from oil palm (Elaeis guinensis Jacq.). IOP Conference Series: Earth & Environmental Science 948: 012074.

Qin, Y., Pan, X., Kubicek, C., Druzhinina, I., Chenthamara, K., Labbé, J. & Yuan, Z. 2017. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth. Frontiers in Microbiology 8: 158.

Rahman, M.M., Azirun, S.M. & Boyce, A.N. 2013. Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS ONE 8(5): e6294.

Saha, D., Choyal, P., Mishra, U.M., Dey, P., Bose, P., Gupta, N.K., Mehta, B.K., Kumar, P., Pandey, S., Chauhan, J. & Singhal, R.K. 2022. Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress 4: 100066.

Santos, M., Cesanelli, I., Diánez, F., Sánchez-Montesinos, B. & Moreno-Gavíra, A. 2021. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses. Fungi 7(11): 939-954.

Setyaningsih, L., Wulandari, A.S. & Hamim, H. 2018. Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi. Biodiversitas 19(2): 454-459.

Siddiqi, K.S. & Husen, A. 2016. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters 11: 400. https://doi.org/10.1186/s11671-016-1607-2

Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P. & Kumar, P. 2018. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Nanobiotechnology 16(1): 84-108.

Sucipto, I., Munif, A. & Tondok, E.T. 2015. Eksplorasi Bakteri dan Cendawan Endofit sebagai Agens Pengendali  Penyakit Blas (Pyricularia oryzae) pada Padi Sawah. Bogor: Institut Pertanian Bogor.

Usman, K., Al-Ghouti, M.A. & Abu-Dieyeh, M.H. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports 9(1): 5658-5669.

Vergara, C., Araujo, K.E.C., Urquiaga, S., Schultz, N., Balieiro, F.C., Medeiros, P.S., Santos, L.A., Xavier, G.R. & Zilli, J.E. 2017. Dark septate endophytic fungi help tomato to acquire nutrients from ground plant material. Microbiology 8(12): 2437-2449.

Wei, S., Zhou, Q. & Mathews, S. 2008. A newly found cadmium accumulator-Taraxacum mongolicum. Journal of Hazardous Materials 159: 544-547.

Wilson-Corral, V., Anderson, C.W.N. & Rodriguez-Lopez, M. 2012. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. Environmental Management 111: 249-257.

Xiao, R., Wang, S., Li, R., Wang, J.J. & Zhang, Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety 141: 17-24.

Yang, L., Feng, Y.X., Lin, Y.J. & Yu, X.Z. 2021. Comparative effects of sodium hydrosulfide and proline on functional repair in rice chloroplast through the D1 protein and thioredoxin system under simulated thiocyanate pollution. Chemosphere 284: 131389.

Yu, X.Z. & Zhang, F.Z. 2013. Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings. Ecotoxicology 22: 752-760.

Yuliani, D., Soekarno, B.P.W., Munif, A. & Surono, S. 2020. Antagonism potency of dark septate endophytes against Pyricularia oryzae for improving health of rice plants. Jurnal Agro 7(2): 134-147.

Zhan, F., He, Y., Zu, Y., Li, T. & Zhao, Z. 2011. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology 27(10): 2483-2489.

Zhuang, P., Yang, Q.W., Wang, H.B. & Shu, W.S. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution 184(1-4): 235-242.

 

*Pengarang untuk surat-menyurat; email: hamim@apps.ipb.ac.id

 

 

 

 

 

 

 

           

sebelumnya